Application and interpretation of adjoint-derived sensitivity fields for tropical cyclone steering

Brett Hoover
University of Wisconsin – Madison
18 May 2009
TC Steering Sensitivity

• Given a properly defined response function for TC steering, the adjoint of a NWP model can provide sensitivities of TC steering useful for:

1. Diagnosing synoptic features/processes important for TC steering
2. Providing valuable *a priori* information about regions in the initial conditions where errors could have a large impact on TC steering
TC Steering Sensitivity

\[R_1 = \text{Zonal steering response function} = \text{Average zonal wind in response function box} \]

\[R_2 = \text{Meridional steering response function} = \text{Average meridional wind in response function box} \]

The **problem** with these response functions is that they are strongly influenced by small changes to the final-time location of the TC in the response function box.
Steering Response Function
Steering Response Function

Response functions represent the steering of the TC only when the TC is centered in the response function box, with the symmetric circulation around the TC being canceled out.
Steering Response Function

Response functions represent the steering of the TC only when the TC is centered in the response function box, with the symmetric circulation around the TC being canceled out.

A northward displacement of the TC will result in a positive contribution to zonal flow in the box.
Response functions represent the steering of the TC only when the TC is centered in the response function box, with the symmetric circulation around the TC being canceled out.

A northward displacement of the TC will result in a positive contribution to zonal flow in the box. A westward displacement of the TC will result in a positive contribution to meridional flow.
Steering Response Function

• What would this problem look like in the sensitivity gradients?
Steering Response Function

- What would this problem look like in the sensitivity gradients?
Steering Response Function
Steering Response Function

Sensitivity of R_1 with respect to vorticity should show positive (negative) sensitivity west (east) of the TC.
Interpretation

Interpretation

Interpretation

Interpretation

Interpretation

MM5 simulation of Typhoon Minduelle (2004)* (12 hour integration)

2-D barotropic, non-divergent simulation of idealized vortex (24 hour integration)

New Steering Response Function

• This problem can be solved if we make a new response function to describe TC steering in a different way:

\[R_{E1} = \text{Environmental zonal flow in response function box} \]

\[R_{E2} = \text{Environmental merid. flow in response function box} \]

\[= \text{Zonal flow in box when vorticity/divergence of TC vortex is removed} \]

\[= \text{Merid. flow in box when vorticity/divergence of TC vortex is removed} \]
New Steering Response Function

Sensitivity of R_1 with respect to vorticity

Sensitivity of R_{E1} with respect to vorticity
New Steering Response Function at 300 hPa for NOGAPS simulation of Typhoon Meari (2004) (36 hour integration)
New Steering Response Function

at 300 hPa for NOGAPS simulation of Typhoon Meari (2004) (36 hour integration)
Comparison

• We expect:
 describes vorticity perturbations that would yield a northward environmental flow
 describes vorticity perturbations that would yield an eastward environmental flow
Comparison

500 hPa perturbation environmental winds for optimal perturbations to increase R_1

500 hPa perturbation environmental winds for optimal perturbations to increase R_{E1}
Comparison

500 hPa perturbation environmental winds for optimal perturbations to increase R_1

500 hPa perturbation environmental winds for optimal perturbations to increase R_{E1}
Conclusions

• Response functions traditionally used to define TC steering are flawed:
 – Small meridional (zonal) perturbations of the TC allow the TC’s own symmetric circulation to contribute to response function
 – These contributions have nothing to do with the steering of the TC
Conclusions

• New response functions have been created to redefine the steering of the TC and remove this flaw:
 – Focus on “environmental wind” with TC removed instead of averaged full wind
 – Optimal perturbations to increase R_1 result in a southerly environmental flow, while optimal perturbations to increase R_{E1} result in a purely westerly environmental flow
Sensitivities of steering to the (potential) observations are informed by the sensitivities to the analysis, the characteristics of the analysis errors, and the nature of the assimilation system.
An Adjoint-Based Targeting Strategy

Sensitivities of steering to the (potential) observations are informed by the sensitivities to the analysis, the characteristics of the analysis errors, and the nature of the assimilation system.