11.) H 4.11: Given a cyclonic vortex in cyclostrophic balance with \(V = V_0 \left(\frac{r}{r_0} \right)^n \), where \(V_0 \) is the tangential velocity at distance \(r_0 \). Find the following values at distance \(r \) from the center of the vortex: circulation, vorticity, and pressure assuming that \(\rho = \rho_0 \).

Circulation: We know that circulation is defined as the closed line integral of the component of velocity that is tangent to the loop, \(C = \oint u \cdot dl \).

In this case, at fixed radius, the tangential velocity is a constant \(V \), and
\[
C = \oint u \cdot dl = V \oint dl = 2\pi V.
\]
As a consequence, \(C = 2\pi V = 2\pi V_0 \frac{r^{n+1}}{r_0^n} \).

Vorticity: \(\zeta = \frac{\partial V}{\partial r} + \frac{V}{r} = \frac{1}{r} \frac{\partial}{\partial r} (rV) = \frac{V_0}{r_0^n r} \frac{\partial}{\partial r} (r^{n+1}) = (n+1) \frac{V_0}{r_0^n} r^{n-1} = (n+1) \frac{V}{r} \)

Pressure: For cyclostrophic flow, the pressure gradient force balances the centrifugal force, so we get:
\[
\frac{V^2}{r} = \frac{1}{\rho} \frac{\partial p}{\partial r}.
\]
Integrating this yields:
\[
\int_{p_0}^{p} \frac{dp}{p} = \int \frac{V_0^2 r^{2n-1}}{r_0^{2n}} dr.
\]
Integrating both sides, gives:
\[
\frac{p - p_0}{\rho} = \frac{V_0^2}{r_0^{2n}} \left[\frac{r^{2n} - r_0^{2n}}{2n} \right] = \frac{V^2 - V_0^2}{2n}.
\]